Cluster expansion made easy with Bayesian compressive sensing
نویسندگان
چکیده
Long-standing challenges in cluster expansion (CE) construction include choosing how to truncate the expansion and which crystal structures to use for training. Compressive sensing (CS), which is emerging as a powerful tool for model construction in physics, provides a mathematically rigorous framework for addressing these challenges. A recently-developed Bayesian implementation of CS (BCS) provides a parameterless framework, a vast speed-up over current CE construction techniques, and error estimates on model coefficients. Here, we demonstrate the use of BCS to build cluster expansion models for several binary alloy systems. The speed of the method and the accuracy of the resulting fits are shown to be far superior than state-of-the-art evolutionary methods for all alloy systems shown. When combined with high-throughput first-principles frameworks, the implications of BCS are that hundreds of lattice models can be automatically constructed, paving the way to high-throughput thermodynamic modeling of alloys.
منابع مشابه
Bayesian compressive sensing for cluster structured sparse signals
In traditional framework of Compressive Sensing (CS), only sparse prior on the property of signals in time or frequency domain is adopted to guarantee the exact inverse recovery. Other than sparse prior, structures on the sparse pattern of the signal have also been used as an additional prior, called modelbased compressive sensing, such as clustered structure and tree structure on wavelet coeff...
متن کاملCompressive Sensing for Cluster Structured Sparse Signals: Variational Bayes Approach
Compressive Sensing (CS) provides a new paradigm of sub-Nyquist sampling which can be considered as an alternative to Nyquist sampling theorem. In particular, providing that signals are with sparse representations in some known space (or domain), information can be perfectly preserved even with small amount of measurements captured by random projections. Besides sparsity prior of signals, the i...
متن کاملBayesian Multi-Task Compressive Sensing with Dirichlet Process Priors
Compressive sensing (CS) is an emerging field that, under appropriate conditions, can significantly reduce the number of measurements required for a given signal. Specifically, if the m-dimensional signal u is sparse in an orthonormal basis represented by the m × m matrix Ψ, then one may infer u based on n m projection measurements. If u = Ψθ, where θ are the sparse coefficients in basis Ψ, the...
متن کاملCompressive Sensing and Signal Subspace Methods for Inverse Scattering including Multiple Scattering
Compressive sensing is a new field in signal processing and applied mathematics. It allows one to simultaneously sample and compress signals which are known to have a sparse representation in a known basis or dictionary along with the subsequent recovery by linear programming (requiring polynomial (P) time) of the original signals with low or no error [1, 2, 3]. In a discrete setting, sparsity ...
متن کاملTree-Structure Bayesian Compressive Sensing for Video
A Bayesian compressive sensing framework is developed for video reconstruction based on the color coded aperture compressive temporal imaging (CACTI) system. By exploiting the three dimension (3D) tree structure of the wavelet and Discrete Cosine Transformation (DCT) coefficients, a Bayesian compressive sensing inversion algorithm is derived to reconstruct (up to 22) color video frames from a s...
متن کامل